Aqueous macrobial eDNA bibliography

Maintained by Taylor Wilcox

Environmental DNA (eDNA) sampling has been variably used to describe the sampling of genetic material from environmental samples. For the purposes of this bibliography, I take a relatively narrow definition along the lines of Thomsen and Willerslev (2015): Environmental DNA sampling is the sampling of genetic material from environmental samples where individuals or pieces of individuals are not isolated prior to analysis. Thus, sampling for sloughed fish DNA in a water sample is eDNA, but species identification from a hair snare is not. Further, I’ve adopted language proposed by Turner et al. (2014A) where microbial eDNA refers to sampling of small, whole individuals (such as bacterial cells) and macrobial eDNA refers to sampling of genetic material that has been separated from the body of a relatively large organism. This bibliography focuses on macrobial eDNA from water samples. Most papers focus on contemporary eDNA (versus ancient DNA; Thomsen and Willerslev 2015). The bibliography is based on a list originally assembled by Dan Isaak for the Climate-Aquatics Blog (#72). The list has also benefited from a literature search conducted by Mae Giddings who maintains a bibliography on aqueous microbial eDNA (http://aquaticedna.weebly.com/).

If you would like to suggest any additional citations or make any corrections to this list, please send me an email: taylor (.) m (.) wilcox (at) gmail (.) com

Last updated: 9 September 2019


Ostberg et al. 2019. Evaluation of environmental DNA surveys for identifying occupancy and spatial distribution of Pacific Lamprey (Entosphenus tridentatus) and Lampetra spp. in a Washington coast watershed. Environmental DNA. https://doi.org/10.1002/edn3.15

Machler et al. 2019. Assessing different components of diversity across a river network using eDNA. Environmental DNA. https://doi.org/10.1002/edn3.33

Sakai et al. 2019. Discovery of an unrecorded population of Yamato salamander (Hynobius vandenburghi) by GIS and eDNA analysis. https://doi.org/10.1002/edn3.31


Carim et al. 2019. Using environmental DNA sampling to monitor the invasion of nonnative Esox lucius (northern pike) in the Columbia River basin, USA. Environmental DNA. https://doi.org/10.1002/edn3.22


Atkinson et al. 2019. Field application of an eDNA assay for the threatened white-clawed crayfish Austropotamobius pallipes. Freshwater Science. DOI: 10.1086/704712


Gargan et al. 2019. Environmental (e)DNA detection of the invasive pink salmon Oncorhynchus gorbuscha during the 2017 Norwegian invasion. bioRxiv. doi: https://doi.org/10.1101/651554

Lam et al. 2019. Developing quantitative PCR assays to detect threatened and invasive freshwater turtles in Hong Kong using environmental DNA. Conservation Genetics Resources. https://doi.org/10.1007/s12686-019-01103-0


Jo et al. 2019. Particle Size Distribution of Environmental DNA from the Nuclei of Marine Fish. Environmental Science and Technology. DOI: 10.1021/acs.est.9b02833


Gunther et al. 2019. Publisher Correction: Metabarcoding of marine environmental DNA based on mitochondrial and nuclear genes. Scientific Reports. https://doi.org/10.1038/s41598-019-46784-7


Holman et al. 2019. Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water. Scientific Reports. https://doi.org/10.1038/s41598-019-47899-7


Lecaudy et al. 2019. Fish diversity assessment in the headwaters of the Volga River using environmental DNA metabarcoding. Applied Conservation of Marine and Freshwater Ecosystems. DOI: 10.1002/aqc.3163


Moushomi et al. 2019. Environmental DNA size sorting and degradation experiment indicates the state of Daphnia magna mitochondrial and nuclear eDNA is subcellular. Scientific Reports. https://doi.org/10.1038/s41598-019-48984-7


Adams et al. 2019. Beyond Biodiversity: Can Environmental DNA (eDNA) Cut it as a Population Genetics Tool? Preprints DOI: 10.20944/preprints201902.0048.v1

Adams. 2017. The detection and quantification of aquatic reptilian environmental DNA. Dissertation at Iowa State University.


Barnes & Turner. 2015. The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics doi:10.1007/s10592-


Buxton et al. 2017. Seasonal variation in environmental DNA in relation to population size and environmental factors. Scientific Reports 7:46294. DOI:10.1038/srep46294


Bylemans et al. 2016. Improving the containment of a freshwater invader using environmental DNA (eDNA) based monitoring. Biological Invasions.


Cannon et al. 2016. In silico assessment of primers for eDNA studies using PrimerTree and application to characterize the biodiversity surrounding the Cuyahoga River. Scientific Reports. 6: 22908. DOI:10.1038/srep22908


Currier et al. 2018. Validation of environmental DNA (eDNA) as a detection tool for at-risk freshwater pearly mussel species (Bivalvia: Unionidae). DOI: 10.1002/aqc.2869


Davis et al. 2018. Accounting for observation processes across multiple levels of uncertainty improves inference of species distributions and guides adaptive sampling of environmental DNA. Ecology and Evolution https://doi.org/10.1002/ece3.4552


Deiner et al. 2018. Optimising the detection of marine taxonomic richness using environmental DNA metabarcoding: the effects of filter material, pore size and extraction method. Metabarcoing and Metagenomics 2: e28963


Deiner et al. 2016. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nature Communications 7:12544. DOI:10.1038/ncomms12544

Deiner et al. 2015. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biological Conservation 183:53-63.


Divoll et al. 2018. Disparities in second-generation DNA metabarcoding results exposed with accessible and repeatable workflows. doi: 10.1111/1755-0998.12770


Doi et al. 2019. Evaluation of detection probabilities at the water-filtering and initial PCR steps in environmental DNA metabarcoding using a multispecies site occupancy model. Scientific Reports 9(1):3581 DOI: 10.1038/s41598-019-40233-1

Doi et al. 2019. Evaluation of biodiversity metrics through environmental DNA metabarcoding outperforms visual and capturing surveys. bioRxiv http://dx.doi.org/10.1101/617670


Doughtery et al. 2016. Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances. DOI: 10.1111/1365-2664.12621.


Dysthe et al. 2018. Molecular Detection of Northern Leatherside Chub (Lepidomeda copei) DNA in Environmental Samples. Western North American Naturalist 78(1). DOI: 10.3398/064.078.0109


Eichmiller et al. 2016 Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environmental Science and Technology. DOI:10.1021/acs.est.5b05672.


Eiler et al. 2018. Environmental DNA (eDNA) detects the pool frog (Pelophylax lessonae) at times when traditional monitoring methods are insensitive. Scientific Reports. 8:5452. DOI:10.1038/s41598-018-23740-5


Erickson et al. 2019. Sampling designs for landscape-level eDNA monitoring programs. Integrated Environmental Assessment and Management DOI: 10.1002/ieam.4155


Furlan & Gleeson. 2016. Improving reliability in environmental DNA detection surveys through enhanced quality control. Marine and Freshwater Research 68(2):


Geerts et al. 2018. A search for standardized protocols to detect alien invasive crayfish based on environmental DNA (eDNA): A lab and field evaluation. Ecological Indicators 84:564-572.


Ghosal et al. 2018. Attracting Common Carp to a bait site with food reveals strong positive relationships between fish density, feeding activity, environmental DNA, and sex pheromone release that could be used in invasive fish management. Ecology and Evolution. DOI: 10.1002/ece3.4

Gingera et al. 2017. Environmental DNA as a detection tool for zebra mussels at the forefront of an invasion event in Lake Winnipeg, Manitoba, Canada. Management of Biological Invasions. 8.


Gomes et al. 2017. Use of environmental DNA (eDNA) and water quality data to predict protozoan parasites outbreaks in fish farms. Aquaculture 479:467-473

Goricki et al. 2017. Environmental DNA in subterranean biology: range extension and taxonomic implications for Proteus. Scientific Reports. 7:45054. DOI: 10.1038/srep45054

Grey et al. 2018. Effects of sampling effort on biodiversity patterns estimated from environmental DNA metabarcoding surveys. 8:8843. DOI:10.1038/s41598-018-27048-2


Hansen et al. 2017. The sceptical optimist: Challenges and perspectives for the application of environmental DNA in marine fisheries. Fish and Fisheries. DOI: 10.1111/ffe.12286

Harper et al. 2019. Environmental DNA (eDNA) metabarcoding of pond water as a tool to survey conservation and management priority mammals. bioRxiv https://doi.org/10.1101/546218

Harper et al. 2018. Ground-truthing environmental DNA metabarcoding for ecological hypothesis testing at the pondscape. bioRxiv. DOI: https://doi.org/10.1101/278309


Hatzenbuhler et al. 2017. Sensitivity and accuracy of high-throughput metabarcoding methods for early detection of invasive fish species. Scientific Reports. 7:46393. DOI: 10.1038/srep46393


Hinlo et al. 2018. Performance of eDNA assays to detect and quantify an elusive benthic fish in upland streams. Biological Invasions. DOI: 10.1007/s10530-018-1760-x


Jerde et al. 2016. Influence of Stream Bottom Substrate on Retention and Transport of Vertebrate Environmental DNA. Environmental Science and Technology. DOI: 10.1021/acs.est.6b01761.


Jo et al, 2017. Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA. Molecular Ecology Resources. DOI: 10.1111/1755-0998.12685


Klobucar et al. 2017. At the forefront: evidence of the applicability of using environmental DNA to quantify the abundance of fish populations in natural lentic waters with additional sampling considerations. Canadian J of Fisheries and Aquatic Sciences. DOI:
Kolby et al. 2015. Rapid Response to Evaluate the Presence of Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis) and Ranavirus in Wild Amphibian Populations in Madagascar. PLoS ONE 10(6):e0125330. doi:10.1371/journal.pone.0125330


Klymus et al. 2015. A reply to Iversen et al.’s comment “Monitoring of animal abundance by environmental DNA — An increasingly obscure perspective” Biological Conservation DOI: 10.1016/j.biocon.2015.09.025


Kuhn et al. 2017. Comparison of ten different DNA extraction procedures with respect to their suitability for environmental samples. Journal of Microbiological Methods. 143:78-86.


Kuzmina et al. 2018. Finding the pond through the weeds: eDNA reveals underestimated diversity of pondweeds. Applications in Plant Science. 6(5): e1155


Ladell et al. 2018. Ethanol and sodium acetate as a preservation method to delay degradation of environmental DNA. Conservation Genetics Resources. DOI: https://doi.org/10.1007/s12686-017-0955-2

Lahoz-Monfort et al. 2015. Statistical Approaches To Account For False Positive Errors In Environmental DNA Samples. Molecular Ecology Resources. 16(3). DOI: 10.1111/1755-0998.12486


Larson et al. 2017. Environmental DNA (eDNA) detects the invasive crayfishes Orconectes rusticus and Pacifastacus leniusculus in large lakes of North America. Hydrobiologia. DOI: 10.1007/s10750-017-3210-7


Lever et al. 2015. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2015.00476


Li et al. 2018. Application of Environmental DNA Metabarcoding for Predicting Anthropogenic Pollution in Rivers. Environmental Science and Technology 52 (20):11708–11719 DOI: 10.1021/acs.est.8b


MacDonald and Sarre. 2016. A framework for developing and validating taxon-specific primers for specimen identification from environmental DNA. Molecular Ecology Resources. DOI: 10.1111/1755-0998.12618.


Mächler and Leese. 2017. Environmental DNA metabarcoding of rivers: Not all eDNA is everywhere, and not all the time. bioRxiv. DOI: https://doi.org/10.1101/164046


Mächler et al. 2014. Utility of environmental DNA for monitoring rare and indicator macroinvertebrate species. Freshwater Science DOI: 10.1086/678128


Maruyama et al. 2019. Correction: The Release Rate of Environmental DNA from Juvenile and Adult Fish. PLoS ONE https://doi.org/10.1371/journal.pone.0212145


Menning et al. 2018. Using redundant primer sets to detect multiple native Alaskan fish species from environmental DNA. Conservation Genetics Resources DOI: 10.1007/s12686-018-1071-7


Miya et al. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science 2:150088.

Mizumoto et al. 2017. Establishing an environmental DNA method to detect and estimate the biomass of Sakhalin taimen, a critically endangered Asian salmonid. Limnology. https://doi.org/10.1007/s10201-017-0535-x


Nardi et al. 2019. The expansion of exotic Chinook salmon (Oncorhynchus tshawytscha) in the extreme south of Patagonia: an environmental DNA approach. Biological Invastions. DOI: 10.1007/s10530-018-1908-8


Nichols and Marko. 2019. Rapid assessment of coral cover from environmental DNA in Hawai‘i. Environmental DNA. DOI: 10.1002/edn3.8


Nukazawa et al. 2018. Simulating the Advection and Degradation of the Environmental DNA of Common Carp along a River. Environmental Science and Technology. DOI: 10.1021/acs.est.8b02293


Olson et al. 2015. An evaluation of target specificity and sensitivity of three qPCR assays for detecting environmental DNA from Northern Pike (Esox lucius). Conservation Genetics Resources 7:615-617.


Padgett-Stewart et al. 2015. An eDNA assay for river otter detection: a tool for surveying a semi-aquatic mammal. Conservation Genetics Resources 8: 5-7. DOI:10.1007/s12686-015-0511-x PDF


Pont et al. 2018. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Scientific Reports. 8(10361). https://doi.org/10.1038/s41598-018-28424-8


Preibler et al. 2018. Detection of elusive fire salamander larvae (Salamandra salamandra) in streams via environmental DNA. Amphibia-Reptilia. DOI: 10.1163/15685381-18000007


Raemy et al. 2018. Detection of the European pond turtle (Emys orbicularis) by environmental DNA: is eDNA adequate for reptiles? Amphibia-Reptilia. DOI: 10.1163/15685381-17000025


Renshaw et al. 2014. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction. Molecular Ecology Resources 15:168–176.


Riaz et al. 2018. An environmental DNA assay for the detection of the regionally endangered freshwater fish Alburnoides bipunctatus in Germany. Conservation Genetics Resources. DOI: 10.1007/s12686-018-1063-7

Rice et al. 2018. Environmental DNA detects a rare large river crayfish but with little relation to local abundance. Freshwater Biology. DOI: 10.1111/fwb.13081


Robinson et al. 2018. Data on optimisation of a multiplex HRM-qPCR assay for native and invasive crayfish as well as the crayfish plague in four river catchments. Data in Brief. https://doi.org/10.1016/j.dib.2018.05.134

Robson et al. 2016. Fine tuning for the tropics: application of eDNA technology for invasive fish detection in tropical freshwater ecosystems. Molecular Ecology Resources. DOI: 10.1111/1755-0998.12505

Rodgers and Mock. 2019. qPCR assays for the detection of two western North American freshwater mussel species, Anodonta nuttalitiana and Anodonta oregonensis, from environmental DNA. bioRxiv http://dx.doi.org/10.1101/372219

https://doi.org/10.1071/WR17179


Rusch et al. 2018. Catching the fish with the worm: a case study on eDNA detection of the monogenean parasite Gyrodactylus salaris and two of its hosts, Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Parasites and Vectors. https://doi.org/10.1016/j.parv.2016.08.002


Sansom et al. 2017. Environmental DNA (eDNA) shedding and decay rates to model freshwater mussel eDNA transport in a river. Environmental Science and Technology. DOI: 10.1021/acs.est.7b05199

DOI:10.1155/2013/174056


Sassoubre et al. 2016. Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environmental Science and Technology. DOI: 10.1021/acs.est.6b03114.


Sato et al. 2017. Usefulness and limitations of sample pooling for environmental DNA metabarcoding of freshwater fish communities. Scientific Reports. 7:13860. DOI:10.1038/s41598-017-14978-6


Shogren et al. Water Flow and Biofilm Cover Influence Environmental DNA Detection in Recirculating Streams. Environmental Science and Technology 52(15): 8530–8537. DOI: 10.1021/acs.est.8b01822


Sigsgaard et al. 2014. Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biological Conservation 183 DOI: 10.1016/j.biocon.2014.11.023x.

Simmons et al. 2015. Active and passive environmental DNA surveillance of aquatic invasive species. Canadian Journal of Fisheries and Aquatic Sciences Doi: 10.1139/cjfas-2015-0262


Smith. 2017. SEASONAL COMPARISON OF ENVIRONMENTAL DNA AND TRADITIONAL SAMPLING TECHNIQUES FOR DETECTING COASTAL TAILED FROGS (ASCAPHUS TRUEI) IN NORTHERN CALIFORNIA. Thesis at Humboldt State University.


Staley et al. 2018. Fecal source tracking and eDNA profiling in an urban creek following an extreme rain event. Scientific Reports 8: 14390


Takahara et al. 2014. Effects of sample processing on the detection rate of environmental DNA from the Common Carp (*Cyprinus carpio*). Biological Conservation 183:64–69.

Takahashi et al. 2017. Seasonal and diel signature of eastern hellbender environmental DNA. The Journal of Wildlife Management. DOI: 10.1002/jwmg.21349

Takeuchi et al. 2019. First use of oceanic environmental DNA to study the spawning ecology of the Japanese eel Anguilla japonica. Inter-Research Marine Ecology Progress Series 609:187-196. DOI: https://doi.org/10.3354/meps12828


Tingley et al. 2018. Environmental DNA sampling as a surveillance tool for cane toad Rhinella marina introductions on offshore islands. Biological Invasions DOI: 10.1007/s10530-018-1810-4

Tomoyuki et al. 2019. Development of a new set of PCR primers for eDNA metabarcoding decapod crustaceans. Metabarcoding and Metagenomics DOI: 10.3897/mbmg.3.33835


Tsuji et al. 2018. Real-time multiplex PCR for simultaneous detection of multiple species from environmental DNA: an application on two Japanese medaka species. Scientific Reports. 8(9138).


Turner et al. 2015. Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biological Conservation 183:93-102.


Ushio et al. 2018. Demonstration of the potential of environmental DNA as a tool for the detection of avian species. Scientific Reports. 8: 4493. DOI:10.1038/s41598-018-22817-5


Wacker et al. 2019. Downstream transport and seasonal variation in freshwater pearl mussel (Margaritifera margaritifera) eDNA concentration. Environmental DNA DOI: 10.1002/edn3.10


Wilcox et al. 2015. Environmental DNA particle size distribution from Brook Trout (Salvelinus fontinalis). Conservation Genetics Resources 7:639-641. PDF

Wilcox et al. 2014. A blocking primer increases specificity in environmental DNA detection of bull trout (Salvelinus confluentus). Conservation Genetics Resources 6:283-284. PDF


Williams et al. 2017. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. PLoS ONE. 12(10): e0186462


